Uncountable collections of pairwise disjoint non-chainable tree-like continua in the plane

L. C. Hoehn
(lhoehn@uab.edu)

University of Alabama at Birmingham

March 19, 2011
STDC11
Definitions, Moore’s Theorem

Continuum \equiv \text{ compact connected metric space}
Definitions, Moore’s Theorem

Continuum \equiv compact connected metric space

Definition

Let X be a continuum.
Definitions, Moore’s Theorem

Continuum \equiv compact connected metric space

Definition

Let X be a continuum.

- X is *tree-like* if for every $\varepsilon > 0$ there is a tree T and a map $f : X \to T$ whose fibres have diameters $< \varepsilon$
Definitions, Moore’s Theorem

Continuum \equiv compact connected metric space

Definition

Let X be a continuum.

- X is *tree-like* if for every $\varepsilon > 0$ there is a tree T and a map $f : X \rightarrow T$ whose fibres have diameters $< \varepsilon$

- X is *arc-like*, or *chainable*, if for every $\varepsilon > 0$ there is an arc A and a map $f : X \rightarrow A$ whose fibres have diameters $< \varepsilon$
Definitions, Moore’s Theorem

Continuum \equiv compact connected metric space

Definition

Let X be a continuum.

- X is **tree-like** if for every $\varepsilon > 0$ there is a tree T and a map $f : X \rightarrow T$ whose fibres have diameters $< \varepsilon$
- X is **arc-like**, or **chainable**, if for every $\varepsilon > 0$ there is an arc A and a map $f : X \rightarrow A$ whose fibres have diameters $< \varepsilon$
- X is a **triod** if there is a subcontinuum $Z \subset X$ such that $X \setminus Z$ is the union of three disjoint non-empty open sets.

Theorem (R. L. Moore, 1928)

The plane \mathbb{R}^2 does not contain an uncountable collection of pairwise disjoint triods.

L. C. Hoehn (lhoehn@uab.edu) (UAB)

Uncountable collections in the plane

March 19, 2011 STDC11
Definitions, Moore’s Theorem

Continuum ≡ compact connected metric space

Definition

Let X be a continuum.

- X is **tree-like** if for every $\varepsilon > 0$ there is a tree T and a map $f : X \rightarrow T$ whose fibres have diameters $< \varepsilon$
- X is **arc-like**, or **chainable**, if for every $\varepsilon > 0$ there is an arc A and a map $f : X \rightarrow A$ whose fibres have diameters $< \varepsilon$
- X is a **triod** if there is a subcontinuum $Z \subset X$ such that $X \setminus Z$ is the union of three disjoint non-empty open sets.

Theorem (R. L. Moore, 1928)

The plane \mathbb{R}^2 does not contain an uncountable collection of pairwise disjoint triods.
Homogeneous plane continua

Definition

A space M is **homogeneous** if for every $x, y \in M$ there is a homeomorphism $h : M \to M$ such that $h(x) = y$.
Homogeneous plane continua

Definition

A space M is **homogeneous** if for every $x, y \in M$ there is a homeomorphism $h : M \to M$ such that $h(x) = y$.

The known homogeneous (non-degenerate) continua in the plane \mathbb{R}^2 are: the **circle** (S^1), **pseudo-arc**, and **circle of pseudo-arcs**.
Homogeneous plane continua

Definition

A space M is **homogeneous** if for every $x, y \in M$ there is a homeomorphism $h : M \to M$ such that $h(x) = y$.

The known homogeneous (non-degenerate) continua in the plane \mathbb{R}^2 are: the **circle** (S^1), **pseudo-arc**, and **circle of pseudo-arcs**.

If this is not all of them, then by (Jones, 1955) and (Hagopian, 1976), there must be another one which is hereditarily indecomposable and tree-like.
Lemma (Hagopian, 1975)

Let M be an indecomposable homogeneous continuum in the plane. Then M does not contain a triod.

Proof.

Triods are decomposable, so M is not a triod.

Suppose $T \subset M$ is a triod.

Since M is indecomposable, it has uncountably many composants, which are pairwise disjoint; T is contained in one of them.

By homogeneity, each composant of M contains a copy of T.

This contradicts Moore's theorem.
Lemma (Hagopian, 1975)

Let M be an indecomposable homogeneous continuum in the plane. Then M does not contain a triod.

Proof.

- Triods are decomposable, so M is not a triod.
Lemma (Hagopian, 1975)

Let M be an indecomposable homogeneous continuum in the plane. Then M does not contain a triod.

Proof.

- Triods are decomposable, so M is not a triod
- Suppose $T \subsetneq M$ is a triod
Indecomposable homogeneous plane continua and triods

Lemma (Hagopian, 1975)

Let M be an indecomposable homogeneous continuum in the plane. Then M does not contain a triod.

Proof.

- Triods are decomposable, so M is not a triod
- Suppose $T \subsetneq M$ is a triod
- Since M is indecomposable, it has uncountably many composants, which are pairwise disjoint; T is contained in one of them
Lemma (Hagopian, 1975)

Let M be an indecomposable homogeneous continuum in the plane. Then M does not contain a triod.

Proof.

- Triods are decomposable, so M is not a triod
- Suppose $T \subsetneq M$ is a triod
- Since M is indecomposable, it has uncountably many composants, which are pairwise disjoint; T is contained in one of them
- By homogeneity, each composant of M contains a copy of T
Lemma (Hagopian, 1975)

Let M be an indecomposable homogeneous continuum in the plane. Then M does not contain a triod.

Proof.

- Triods are decomposable, so M is not a triod
- Suppose $T \subset M$ is a triod
- Since M is indecomposable, it has uncountably many composants, which are pairwise disjoint; T is contained in one of them
- By homogeneity, each composant of M contains a copy of T
- This contradicts Moore’s theorem
Non-chainable tree-like continua in the plane

Theorem (Oversteegen & Tymchatyn, 1984)

Let M be an indecomposable homogeneous continuum in the plane. If every proper subcontinuum of M is chainable, then M is the pseudo-arc.
Non-chainable tree-like continua in the plane

Theorem (Oversteegen & Tymchatyn, 1984)

Let M be an indecomposable homogeneous continuum in the plane. If every proper subcontinuum of M is chainable, then M is the pseudo-arc.

Example (Ingram, 1974)

There exists an uncountable family of pairwise disjoint non-chainable tree-like continua in the plane.
Non-chainable tree-like continua in the plane

Theorem (Oversteegen & Tymchatyn, 1984)

Let M be an indecomposable homogeneous continuum in the plane. If every proper subcontinuum of M is chainable, then M is the pseudo-arc.

Example (Ingram, 1974)

There exists an uncountable family of pairwise disjoint non-chainable tree-like continua in the plane.
Non-chainable tree-like continua in the plane

Theorem (Oversteegen & Tymchatyn, 1984)

Let M be an indecomposable homogeneous continuum in the plane. If every proper subcontinuum of M is chainable, then M is the pseudo-arc.

Example (Ingram, 1974)

There exists an uncountable family of pairwise disjoint non-chainable tree-like continua in the plane.
Non-chainable tree-like continua in the plane

Question

Is there a non-chainable tree-like continuum X such that the plane contains an uncountable collection of pairwise disjoint copies of X?

Example (H, 2011)

Let X be the non-chainable continuum with span zero from (H, 2011). Then $X \times C$ is embeddable in the plane, where C is the middle-thirds Cantor set. Moreover, if $p, q \in C$ with $|p - q| < \varepsilon$, then there is an ε-homeomorphism of the plane to itself taking $X \times \{p\}$ to $X \times \{q\}$.
Non-chainable tree-like continua in the plane

Question
Is there a non-chainable tree-like continuum X such that the plane contains an uncountable collection of pairwise disjoint copies of X?

Example (H, 2011)
Let X be the non-chainable continuum with span zero from (H, 2011). Then $X \times C$ is embeddable in the plane, where C is the middle-thirds Cantor set.
Moreover, if $p, q \in C$ with $|p - q| < \varepsilon$, then there is a ε-homeomorphism of the plane to itself taking $X \times \{p\}$ to $X \times \{q\}$.
Non-chainable tree-like continua in the plane

Question
Is there a non-chainable tree-like continuum X such that the plane contains an uncountable collection of pairwise disjoint copies of X?

Example (H, 2011)
Let X be the non-chainable continuum with span zero from (H, 2011). Then $X \times C$ is embeddable in the plane, where C is the middle-thirds Cantor set.
Moreover, if $p, q \in C$ with $|p - q| < \varepsilon$, then there is a ε-homeomorphism of the plane to itself taking $X \times \{p\}$ to $X \times \{q\}$.
Non-chainable tree-like continua in the plane

Question
Is there a non-chainable tree-like continuum X such that the plane contains an uncountable collection of pairwise disjoint copies of X?

Example (H, 2011)
Let X be the non-chainable continuum with span zero from (H, 2011). Then $X \times C$ is embeddable in the plane, where C is the middle-thirds Cantor set. Moreover, if $p, q \in C$ with $|p - q| < \varepsilon$, then there is a ε-homeomorphism of the plane to itself taking $X \times \{p\}$ to $X \times \{q\}$.
Open questions

Questions

1. Is there a hereditarily indecomposable non-chainable tree-like continuum X such that the plane contains an uncountable collection of pairwise disjoint copies of X?

2. If X is a tree-like continuum and $X \times C$ embeds in the plane, must X have span zero?

3. Is there a hereditarily indecomposable non-chainable continuum with span zero?
Open questions

Questions

1. Is there a hereditarily indecomposable non-chainable tree-like continuum X such that the plane contains an uncountable collection of pairwise disjoint copies of X?

2. If X is a tree-like continuum and $X \times C$ embeds in the plane, must X have span zero?
Open questions

Questions

1. Is there a hereditarily indecomposable non-chainable tree-like continuum X such that the plane contains an uncountable collection of pairwise disjoint copies of X?

2. If X is a tree-like continuum and $X \times C$ embeds in the plane, must X have span zero?

3. Is there a hereditarily indecomposable non-chainable continuum with span zero?