Notes on a construction of a compact metric space from a compact Hausdorff space

L. C. Hoehn

May 22, 2009

All material in these notes is taken from:

1 Preliminaries

1.1 Lattice bases

By a lattice, we mean a partially ordered set in which every pair of elements has a least upper bound and a greatest lower bound.

Example. Let \(\langle X, T \rangle \) be a topological space. Then \(T \) is a lattice (with the inclusion relation \(\subseteq \)), in which for \(A, B \in T \) we have \(\sup \{A, B\} = A \cup B \) and \(\inf \{A, B\} = A \cap B \).

Definition. Given a topological space \(\langle X, T \rangle \), a family \(B \subseteq T \) is a lattice base for \(X \) provided:

(i) \(B \) is a base for \(X \); and

(ii) \(B \) is a sublattice of \(2^X \) (i.e. closed under finite unions and intersections).

Theorem (Wallman, 1938). There is a formula \(\alpha(x) \) (with all quantifiers bounded by \(x \)) such that for any lattice \(L \), we have \(\alpha(L) \) if and only if \(L \) is isomorphic to a lattice base for a compact Hausdorff space.

If \(\alpha(L) \) holds, we will denote by \(wL \) some particular compact Hausdorff space for whom \(L \) is a lattice base.

1.2 Set theory and elementary submodels

Let \(\phi(x_1, \ldots, x_n) \) be a formula in the language of set theory. If \(M \) is a set and \(a_1, \ldots, a_n \in M \), then \(M \models \phi[a_1, \ldots, a_n] \) means that \(\phi \) holds when we treat \(M \) as the universe of sets, i.e. we replace all quantifiers in \(M \) by bound quantifiers.

For example, if \(\phi(x) \) is \(\forall y (\exists z) (x \in z \land y \notin z) \), then \(M \models \phi[a] \) means \((\forall y \in M) (\exists z \in M) (a \in z \land y \notin z) \).
Given a set H, an elementary submodel of H is a set $M \subseteq H$ which has the property that given any formula $\phi(x_1, \ldots, x_n)$ of the language of set theory and any $a_1, \ldots, a_n \in M$, one has $H \models \phi[a_1, \ldots, a_n]$ iff $M \models \phi[a_1, \ldots, a_n]$. In this case we write $M \prec H$.

Fact (Löwenheim-Skolem). Let H be a set, and let $S \subseteq H$ be countable. Then there is a countable elementary submodel M of H with $S \subseteq M$.

2 The construction
Suppose $\langle X, T \rangle$ is a compact Hausdorff space, so that $\alpha(T)$ holds.

- Let H be a set which is large enough so that $X, T \subset H$, $\mathcal{P}(X) \subset H$, $\mathcal{P}(\mathcal{P}(X)) \subset H$, and so on, to ensure that for any topological property $\Psi(x)$ we will consider below, we have $\Psi(X)$ holds if and only if $H \models \Psi(X)$.
- Let M be a countable elementary submodel of H, and define $L := T \cap M$.
- From elementarity it follows that L is a sublattice of T. We also have by elementarity $M \models \alpha(T)$, hence $\alpha(L)$ holds (since $\alpha(x)$ only involves quantifiers bounded by x). Thus L is (isomorphic to) a lattice base for a compact Hausdorff space wL.
- Since M is countable, L is countable, and it follows by the Urysohn metrization theorem that wL is metrizable.

The upshot is that we have a compact metric space wL and a lattice base L for wL such that, loosely speaking, L satisfies any formula that we are interested in as soon as T does.

3 Examples of reflected topological properties
We now consider some examples of topological properties $\Psi(x)$ for which if $\Psi(X)$ holds then $\Psi(wL)$ holds.

To avoid confusion, let us denote by 1 the top element X of T (and L).

§ Disconnectedness
Suppose X is disconnected. This means that there are sets $A, B \in T$ such that $A \neq \emptyset$, $B \neq \emptyset$, $A \cap B = \emptyset$ and $A \cup B = X$. Written technically, we have:

$$H \models (\exists A, B \in T) (A \neq \emptyset \land B \neq \emptyset \land A \cap B = \emptyset \land A \cup B = 1).$$

By elementarity, M models this formula as well, hence there are $A, B \in L$ with the same property. Thus in particular there are non-empty complementary open sets in wL, so wL is disconnected.
§ Connectedness

Suppose X is connected. Then there is no pair $A, B \in T$ with the properties given above. By elementarity, it follows that there is no such pair in L either.

However, a priori it may still happen that there is a non-trivial clopen subset of wL; so far we only know it cannot be in the base L. We need to argue:

Lemma 1. Clopen subsets of a compact Hausdorff space belong to any lattice base.

Proof. Suppose X is compact, L is a lattice base for X, and $A \subseteq X$ is clopen. Notice that A is compact. Let $A \subseteq L$ be such that $\bigcup A = A$. Then A is an open cover for A, so it has a finite subcover $\{A_1, \ldots, A_n\}$. Then $A = \bigcup_{i=1}^n A_i \in L$ since L is closed under finite unions.

This completes the argument that connectedness reflects. Thus if X is a continuum, then wL is a metrizable continuum.

§ Covering dimension

Definition. Given a cover $\langle U_i \rangle_{i \in I}$, a precise refinement of $\langle U_i \rangle_{i \in I}$ is a cover $\langle V_i \rangle_{i \in I}$ such that $V_i \subseteq U_i$ for every $i \in I$, and $V_i \cap V_j = \emptyset$ if and only if $U_i \cap U_j = \emptyset$.

Lemma 2. If X is a compact Hausdorff space and L is a lattice base for X, then any open cover for X has a precise refinement by members of L.

A topological space X has covering dimension $\leq n$ iff every open cover $\langle U_i \rangle_{i=1}^{n+2}$ by $n+2$ sets can be shrunk to an open cover $\langle V_i \rangle_{i=1}^{n+2}$ such that $\bigcap_{i=1}^{n+2} V_i = \emptyset$. Taking precise refinements, we may assume the sets U_i and V_i belong to a given lattice base.

Suppose X has covering dimension $\leq n$. Then $H \models \forall U_1, \ldots, U_{n+2} \in T [\bigcup_{i=1}^{n+2} U_i = 1 \rightarrow \exists V_1, \ldots, V_{n+2} (\bigwedge_{i=1}^{n+2} V_i \subseteq U_i \land \bigcup_{i=1}^{n+2} V_i = X \land \bigcap_{i=1}^{n+2} V_i = \emptyset)]$, hence by elementarity, M models the same sentence. It follows that wL has covering dimension $\leq n$ as well.

Likewise, if X has covering dimension $> n$, then the same holds for wL. Therefore if X has covering dimension $= n$, then wL has covering dimension $= n$.

§ Chainability

It follows from Lemma 2 that a compact Hausdorff space is chainable if and only if every open cover has a chain refinement by open sets in a (any) given lattice base. Of course it suffices to only consider covers by basic open sets.

Suppose X is chainable. Then $H \models \forall n \in \omega \forall U ([U$ is a function from n to $T) \rightarrow \exists m \in \omega \exists V (V$ is a function from m to $T \land (\forall j < m) (\exists i < n) V(j) \subseteq
\[U(i) \land \bigcup_{j<m} V(j) = 1 \land (\forall j_1, j_2 < m) (V(i) \cap V(j) \neq \emptyset \rightarrow |i - j| \leq 1)), \text{ hence by elementarity, } M \text{ models the same sentence. It follows that } wL \text{ is chainable.} \]

Likewise, if \(X \) is not chainable then \(wL \) is not chainable.

\section*{§ Other properties}

Some other properties that are reflected include:

- Indecomposability
- Hereditary indecomposability
- Irreducibility
- Triodicity
- (Surjective) (semi) span zero
- (Surjective) (semi) span non-zero

\textit{Remark.} For the arguments for the last two items, we need to make sure the topology on \(X \times X \) belongs to \(M \) as well.